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PHYSICAL IDEAS OF THE METHOD OF ELEMENTARY EXCITATIONS
(The Many-Electron Problem in the Theory of
the Solid State)

V. L. Bonch-Bruyevich

ABSTRACT. The application of the many-electron theory
of solids involving the behavior of a large number of inter-
acting particles is proposed for the clarification of certain
paradoxes and the solution of new problems in the theory of
metals which the single electron is incapable of handling.

The solution of the formulated problem is associated with
severe difficulties due to complexity of the wave equation for

the system of many’(~&025) interacting particles and due

to the necessity of computing complex statistical sums. The
problem can be simplified substantially by considering only
the weakly excited state of the system. The hypothesis of
elementary excitation is examined in the light of recent de-
velopments in solid-state physics to show its physical im-
plications and its scope of application in the solution of
new problems associated with the solid state.

SECTION 1. INTRODUCTION. THE DIFFICULTIES ASSOCIATED WITH
THE "SINGLE-ELECTRON" THEORY OF METALS.

The problem of investigating systems which consist of a large number of Zzéf
interacting particles occupies one of the key places in the modern physics of
condensed media. As we shall see, this problem is particularly acute in the
theory of the metal state (as well as in the theory of the liquid); however,
even in the theory of semiconductors, where it would seem that the interaction
of conduction electrons can be neglected because their concentration is small,
there are problems encountered in which it is absolutely necessary to take el-
ectron interaction into account. It is sufficient to recall the following
common argument: as a result of (for example) nonuniform distribution of im-
purities in the lattice, the electron concentration in the lattice is also dif-
ferent at different points and the redistribution of electrons continues until
the resulting space charge produces a field which inhibits a further mixing of
electrons. Arguments of this type are constantly encountered in the theory of
surface states, of photoelectromotive force, etc., and it is clear that such
arguments have been based entirely on the presence of electron interaction. At
the same time the correct solution of quantum mechanical (and also of the class-
ical) problem on the behavior of a system consisting of a large number of inter-
acting particles poses substantial difficulties. In the present article, without
going into the details of calculations, we shall try to present the substance
of one of the methods for the approximate solution of the problem of a large num-
ber of bodies, which appears to be most promising to us and which is being

*
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developed in a most interesting manner at the present time. No claims are
made to the completeness of the presentation; our problem is merely to acquaint /56
the non-theoretical reader with the substance of the matter.

Since the basic sphere of application for the methods of solving the prob-
lem of many bodies is currently the physics of solids, it is appropriate that
we start our discussion by considering some of the difficulties associated with
the modern theory of metals. This theory which has neglected the actual strong
interaction between electrons and until the present day has been developed al-
most exclusively as a single~electron theory* in which the correlation between
electrons was either completely ignored (the simplest model of an "electron gas"

ref. 1), or which was taken into account very approximately by the method of
the self-consistent field). Nevertheless, series of qualitative conclusions
which follow from the "single-electron” theory (even in its most primitive form)
are in good agreement with experiment. This includes, for example, the tempera-
ture dependence of electrical conductivity and the electron heat-capacity of
metals, the theory of paramagnetism for alkaline metals, and others. At first
glance this situation appears to be paradoxical; a physically unsound theory
leads to correct results; obviously ?ref. 2) the problem of the theory of metals
first involves an understanding of the reasons for this paradox®*. We note,
however, that the successes of a "single-electron" model should not be overemph-
asized (nevertheless, this overemphasis in regard to the band theory of metals
unquestionably exists in a series of works***); in this respect the books by
Mott, Jones and Seitz referenced above are characteristic.
¥

An exception to this is only the theory of ferromagnetism, in which the nec-
essity of an essentially "many-electron" formulation was long ago recognized.
¥

An effort to solve the problem in a trivial manner, by assuming that the elec-
trons of interaction energy is small compared to the electron kinetic energy,
has proven to be inconsistent. Indeed the Fermi energy for the electron gas,
as we know, is given by the equation

ﬁ?

Ep=@3x2)"g—n'l,

where n is the number of electrons per unit volume; m is the mass of the elec-
tron; while the average energy of Coloumb interaction is obviously of the order

e%nt/3.,
The ratio of these energies is of the order of h'107n-l/3, which for rational

values of n (approximately 1022cm3) represents a quantity which is of the order
of unity. As it appears to us, this situation destroys the very concept of the
"Fermi Sphere" for electrons in a metal.
e

The band theory of metals has been frequently subjected to justifiable critism
in the works of Soviet scientists (refs. 2-6).



A series of phenomena cannot at all be explained within the framework of
a "single-electron" theory (such phenomena apparently include superconductivity),
while other phenomena are explained only formally, so to speak. Probably the
strongest example of such a formal explanation is encountered in the theory on
the magnetic properties of metals at low temperatures. As we know, at low ZQZ
temperatures the magnetic susceptibility of a series of metals depends in a
periodic manner on the magnetic field intensity H. From the qualitative stand-
point this effect appears to be explained very well by the "single electrons”
theory (refs. 7-9), which provides for the necessary periodic relationship.
When the parameters contained in the theoretical formula (for the effective
mass* and the concentration of conduction electrons) are selected in a particu-
lar manner we also obtain a quantitative agreement between theory and experiment.
However, a more careful examination of the problem (ref. 10) shows that this
explanation is illusory to a large extent. Specifically, for the parameters
contained in the theoretical equation, we find values which are unreasonably
small (and which do not agree with data obtained from other measurements). Thus,
for example, in the case in zinc, the number of conduction electrons correspond-
ing to a single atom is found to be of the order of 0.8-10-6 which, as shown in
reference 11, represents only l/lOOO of the number necessary to explain the
values of the electron heat capacity of this metal as observed experimentally.
This situation is the same for other metals (beryllium and bismuth). Thus it
turns out that the "single electron" theory gives only a correct qualitative
nature of the relationship but not the quantitative side of the picture. How-
ever, the form of curve X(H) is determined to a large measure only by the
statistical properties of the system. Only the numerical characteristics of the
curve are associated with the specific values of the parameters which depend
on the nature of the system (for example masses, charges and particle concen-
trations).

In view of this, we should point out that in order to obtain, for example,
the qualitative picture of the variation in the electron heat capacity as a
function of temperature, we must know only the statistics of electrons; simi-
larly, only the statistical properties of electrons and of the thermal lattice
oscillations determine the form of the temperature dependence for the electri-
cal conductivity of metals.

Thus, in a single-electron theory not all the relationships are properly
obtained, but rather only those which basically are due, to the statistical
properties of the system--by the fact that the electrons satisfy the Fermi
statistics. On the other hand, those laws which depend specifically on the
form of the energy spectrum and on the specific values which determine its
parameters are usually not conveyed by the "single electron" theory of metals.

In order to clarify the above "paradox” and also in regard to the invest-
igation of problems in the theory of metals which have not been solved to date, {58
— |

It would be more correct to say "effective masses" because, due to the aniso-
tropy of crystalline lattices in the metals considered, the electrons in these

metals are characterized by three effective masses rather than by one effective |
mass (messes corresponding to the three principal exes of the crystal).




it becomes necessary to use a "many-electron" approach to the problem. Thus,
we must turn to the problem concerning the investigation of the properties of
a system consisting of a large number of particles which interact.

SECTION 2. THE HYPOTHESIS OF "ELEMENTARY EXCITATIONS"

The difficulties associated with the solution of the problem formulated
are as follows:

a) the wave equation for a system consisting of a large number (approxi-

mately 1023) of interacting particles is exceptionally complex; its exact so-
lution is hardly possible by the methods of modern mathematics, even if a
computer is used.

b) even if it were possible to determine the possible energy levels of
the system considered with a large number of bodies, it would still be necessary
to compute the following statistical sum to find a series of quantities which
are observed experimentally (heat capacity, magnetic susceptibility, etc.):

E’l
z=Y, % . (2.1)

(En are the possible energy levels numbered by the subscript n.) Indeed, if we

know Z we can find the free energy and consequently all the thermodynamic pro-
perties of the system. Generally speaking, this problem is somewhat simpler
than the first (we recall that the classical analogy (2.1) represents an in-
terval with a multiplicity of approximately 1023, where the expression under
the integral sign, generally speaking, is not represented in the form of a pro-
duct of co-factors each of which depends on a small number of variables).

The above difficulties are particularly serious and, considering the state
of modern mathematics, it is hardly reasonable to try to solve them directly.
However, by considering the expression for the statistical sum.(2.l) it is clear
that in practice this formulation of the problem is not mandatory. Indeed, a
significant role in (2.1) is played only by the energy levels which are close
to the basic one. Therefore, we can limit ourselves to the investigation of
such "weak excitations" of the system's states. This situation, as we shall
see, simplifies the problem tremendously.

In some specific cases the problem of the weakly excited states of a sys-
tem consisting of a large number of particles has long been solved. In this
connection we recall two well-known examples and consider them (from a purely
gualitative point of view), remembering to expose certain special features
assoclated with the behavior of such systems which, as will be shown later, are
of a completely general nature.



A. Oscillations of a Crystalline Lattice

The problem of the thermal oscillations of a crystalline lattice apparently
represents the first historic example involving the investigation of the col- /59
lective behavior of a large number of interacting particles. Apparently, in
this case the lowest energy state pertains to one of "complete orderliness"
when all the atoms (or ions) of the lattice are uniformly (and periodically)
distributed in space¥®. The excitation of the system consists of the origin of
small oscillations of atoms near the position of equilibrium; in this case the
spatial distribution of atoms will naturally be slightly heterogeneous. In
other words, the excitation of the system in this case consists of the occur-
rence of certain "special states'--local variations in density; the latter are
not "frozen" in a single place but rather propagate over the entire lattice as
waves (a particular case of these waves are the conventional sound oscillations).

For small (compared with interatomic distances) amplitudes of oscillations
(this is precisely the condition for "small excitation") the principle of
superposition is valid for elastic waves, i.e., these waves propagate independ-
ently of one another and the energy of the system is the sum of the energies
of the individual waves.

In the quantum mechanical consideration of the problem.(refs. 12-14) these
waves are naturally associated with discrete formations--sound quanta¥*¥ (pho-
nons). The interaction between the latter is absent as soon as the principle
of supirposition becomes valid for the respective waves ("harmonic" approxi-
mation).

Thus, from the energy point of view, the weakly excited state of a crys-
talline lattice may be looked upon as an "ideal gas'" consisting of certain
"quasi particles"--phonons. We should like to emphasize that these quasi
particles have nothing in common with atoms which constitute the system in
question but rather represent the corpuscular aspect of the collective oscil-
latory motion of the latter. :

The state of the phonon (in a simple lattice) is determined by its polari-
zation (longitudinal or transverse Wave) and by three components of some vector
(in many respects analogous to the impulse), which are used to establish the
energy. Since the values of sound intensity in the lattice, possible in prin-
ciple, are not limited®*¥*, any number of "quasi particles" may be in the same
state; consequently they satisfy the Bose-Einstein statistics (irrespective of
the type of statistics satisfied by the atoms making up the lattice). As we
know, by using the concept of phonons we can construct the entire thermodynamics

*F

Our arguments follow a purely "classical" approach and we neglect the exist-
ence of zero oscillations, whose presence is insiginificant for our discussions.
e

¥££e concept of sound quanta was first introduced by I. Ye. Tamm (ref. 12).

Of course, when the sound waves are of sufficiently strong intensity these
(Footnote continued on next page).



of a crystalline lattice and also examine a series of kinetic processes which
take place in it.

B. Spin Waves in a Ferromagnetic Material

The second example which we wish to consider pertains to weakly excited
states of ferromagnetic materials. As we know (ref. 15), the basic energy
level of a ferromagnetic material corresponds to a state of "complete magnet-
ization" when the magnetic moments of all the lattice atoms are oriented in
the same manner® (the spins of all the "magnetic"** electrons have the same
component. along some axis).

The excitation of the system consists of a change in the direction of the
magnetic moments of certain atoms (in the inversion of spins in part of the
"magnetic" electrons), i.e., as in the first example, it consists of the
occurrence of certain special states (in this case, of spins with the same di-
rection in a "medium" of spins with opposite direction) which propagate as
waves over the entire crystalline lattice.

Indeed, in view of the physical equivalence of various nodes of the lattice
it is obvious that a state with "inverted spin" cannot "get stuck" in some one
particular atoms**¥, but will propagate over the lattice due to the interaction
of electrons. In the stationary state the inverted spin may be uncovered with
the same probability in any atom of the lattice (if the lattice is a simple
one). These states are called spin waves. As long as the number of inverted
spins is small compared with the total number of "magnetic" electrons (conditions
for the level of excitation) and, consequently, the probability of their en-
counter in the lattice is small, we may assume that the spin waves propagate
independently of one another and each of them is characterized by a specific
energy. JIn this case the energy of the system of electrons (With an accuracy {61
determined by an insignificant additive constant) is composed of the energies
of individual spin waves. Naturally, the latter may be looked upon as certain
"quasi particles" (sometimes called "ferromagnons" because they are character-
istic of ferromagnetic materials), and as in the first example we arrive at a
concept of an ideal gas consisting of "quasi particles" which represent a
weakly excited state of a system of particles which undergo strong interactions

in this case electrons in a ferromagnetic material). We should like to
iContinued)
waves can no longer be looked upon as independent. This situation, however, is
insignificant for our discussions (even because the corresponding intensities
are muc? larger than those necessary to impart a Bose nature to the phonon sta-
tistics).

*
If we take into account the weak magnetic interaction of electrons this pro-
position requires a certain refinement which, however, does not introduce any

basic changes in our discussions.

e

Magnetic electrons are those whose spins (in the absense of a magnetic field)
are capable of orientation in any direction (i.e., for example, electrons con-
tained in the unfilled atomic shells).

e

Here we are speaking only of an ideal lattice which does not contain any struct-

ural defects which would disrupt the translation invariance of the system.

6



emphasize again that these quasi particles have nothing in common with the
electron®* themselves but merely characterize the corpuscular aspect of their
collective motion.

The concept of spin waves has proven very fruitful in the theory of
ferromagnetism and has made it possible to establish theoretically the vari-
ation in the spontaneous magnetization close to saturation as a function tem-
perature (ref. 16) and as a function of the external field (ref. 17) and has
also made it possible to develop a quantum theory for magnetic anisotropy (ref.
18) and magnetostriction (ref. 19).

We can see that In both cases considered, the energy corresponding to the
excited states of the system is represented as a sum of the energies of in-
dependent "quasi particles," and the investigation of the properties of the sys-
tem in these states is reduced to the investigation of the quasi particle '"gas"
(i.e., to a problem which is well known and which can be solved without any dif-
ficulties). Because the systems which we have considered are entirely different
physically, it is natural to assume that this proposition is characteristic
of any quantum system consisting of a large number of interacting particles.

The excitation of the system is always reduced to the occurrence of certain
special states--"elementary excitations," which (in view of the translational
invariance) propagate in a wave-like fashion over the system; the weakly ex-
cited states of any quantum system consisting of a large number of interacting
particles may be represented as an ideal gas consisting of certain "quasi
particles" which replace these waves¥¥,

The possible values of the energy of the quasi particles, their moment
of momentum and other similar guantities as well as the statistics by the ele-
mentary excitations characterize completely the weakly excited states of the
system. (Depending on the statistics of the elementary excitations, we speak
of the Fermi type or the Bose type spectra (ref. 14) and the terms "Fermi" and
"Bose" branches are sometimes used.) The quasi particles about which we are
speaking in general have nothing in common with those particles which constitute
the given system but represent merely a specific feature of their collective
motion*¥*¥*

¥*

In this connection we note the known fact that spin waves (ref. 15) satisfy
the Bose statistics rather than the Fermi statistics, as in the case of elec-~
trons.

43¢

As far as we know, tThis idea was first expressed by L. B. Landau. In recent
years it has been the subject of investigation by N. N. Bogolyubov, S. B.
Vonsovskiy and by a series of other Soviet scientists.

et

It follows from what we said that, for example, it would be entirely meaning-
less to attempt to collect the quasi particles (for example phonons) into a
"box." They exist only to the extent of the existence of a system of inter-
acting particles which undergo collective motion reflected by the concept of
quasi particles; when the system is destroyed (for example, when the crystal is
vaporized) the corresponding elementary excitations naturally vanish.

7



It is gquite obvious that the concept of elementary excitations immediately [§g
solves both difficulties mentioned above in the theory of many bodies. Indeed,
as soon as the values of the energy corresponding to the weakly excited state
of the system are expressed in the form

E=§w(k)n(k), (2.2)

where n(k) is the number of elementary excitations characterized by the set of
"quantum numbers" k (for example by impulse, spin, etc.), the problem is re-
duced to the computation of the energy associated with a single quasi particle,
w (k). We can expect that this will be much simpler than to solve the problem
of a large number of bodies in its general formulation. Indeed, in a series

of cases the energy spectrum of elementary excitations may be computed gquite
effectively. The different weakly excited levels of the system are obviously
assoclated with various sets of numbers n(k), i.e., with different distributions
of elementary excitations according to their quantum states.

Furthermore, the problem of computing the statistic sum in this case gen-
erally loses its acuteness because we are now dealing with an ideal gas for
which the equilibrium function of particle distribution according to energy
is well known.

Finally, it i1s clear that the concept of elementary excitations makes it
possible to examine nonequilibrium problems without any special difficulty.
Indeed, since definite values of energy are associated with the quasi particles
and since the charge impulses, etc., may also have definite values, we can say
that these transport their respective quantities. In this way, problems con-
cerning transport processes in condensed media are reduced to analogous prob-
lems in the kinetic theory of an ideal gas. For example, the examination of
heat conductivity, due to the lattice itself, is reduced to the study of energy
transport by a flux of phonons. The problems concerning the establishment of
statistical equilibrium in the system may also be examined by the method of
elementary excitations without any special difficulty. In this case it is only
necessary to introduce (as the next approximation) the weak interaction between
quasi particles which leads to the establishment of equilibrium Fermi or Bose
distribution by states. Indeed, from the point of view concerning the elementary
excitations, the establishment of therodynamic equilibrium in a system with a
large number of interacting particles is reduced to the establishment of the /63
equilibrium distribution of quasi particles in the gas.

The effectiveness of the method of elementary excitations has been demon-
strated in a series of works devoted to the solution of specific equilibrium
and nonequilibrium problems. Among these works we should mention, first of all,
the theory of the superfluidity of helium II (ref. 20-24) first successfully
developed by L. D. Landau exclusively on the basis of the concept on elementary
excitations®*. In the work of M. N. Bogolyubov (ref. 21), which gives a
o

We do not consider these investigations here because there is a detailed survey
on the subject in the literature and we refer the reader to this survey (ref. 65).

8



theoretical calculation of the spectrum of elementary excitations in a gas of
Bose particles, weakly interacting on one another, these concepts have been
substantiated for the microscopic case. An example of the successful application
of the method of elementary excitations is the theory of heat conductivity in
paramagentic dielectrics developed by I. Ya Pomeranchuk (ref. 25). These
materials contain specific excitations associated with the presence of exchange
interaction of electrons in the paramagnetic atoms. Specifically as in the
case of a ferromagnetic material, the excited states of the system in this case
may differ from the basic state by a different distribution of magnetic moments
(the difference compared with the ferromagnetic case is that the basic state

no longer corresponds to complete magnetization. It 1s difficult to indicate
the exact distribution of magnetic moments in the basic state of a paramagnetic
material when the external field is absent; for our purposes, however, it is
sufficient to know that some particular distribution does exist). Naturally
the deviation from the basic distribution of magnetic moments is not localized
to individual atoms but is propagated in a wave-like fashion over the entire
lattice due to the interaction of electrons. These elementary excitations

are called magnons. (For weakly excited states, when the number of magnons is
small compared with the total number of atoms in a lattice, the energy of their
interaction may be neglected and consequently the excitation energy is the sum
of the energies of the individual magnons.) The magnons (Which apparently
satisfy the Fermi statistics) interact with phonons, thereby affecting their
mean free path, and also take part in the transport of heat. As shown in ref.
25, this leads to specific peculiarities in the variation of heat conductivity
x as a function of temperature at low temperatures (the function x(T) is found
to be nonmonotonic).

In addition to this, the method of elementary excitations was used with
success 1n investigating the approximation to the state of equilibrium in ferro-
magnetic materials and in paramegnetic materials (refs. 26, 27). It has also /64
been used in efforts to construct a many-electron theory of metals and semi-
conductors which we shall discuss in the next section.

We know, finally, that in all of these cases a successive (even though
approximate) consideration of the problem of many bodies naturally leads to the
concept of elementary excitations. This is true in the theory of anti-ferro-
magnetism which has been solved on the basis of several generalized concepts
concerning spin waves (refs. 28-51); weakly excited states of molecular crystals
are capable of being described by means of concepts on excitons (refs. 52-55)
--"quasi particles," whose motion characterizes the displacement of excitation
energy (which, for example, 1s obtained from light) from one node of the lattice
to another.

This concept concerning the exciton can naturally be extended to the case
of any homopolar crystal. If one of the atoms of the lattice has obtained a
certain excess energy in some manner or other, it is clear that this energy will
be transmitted to other atoms as a result of interatomic interaction (in the
end this energy will be uniformly, on the average, distributed among them) .
The wave-like displacement of the excited state may be looked upon as the

motion of the quasi-particle of the excitons*.
* —
The concept concerning the exciton in a somewhat different form may be extended

(Footnote continued on the next page). 9



Finally, the concept concerning elementary excitations is in fact widely
used in the ordinary theory of semiconductors (see, for example, ref. 36).
Indeed, the "holes" in semiconductors represent typical quasi particles
describing those states in which there is an incomplete set of electrons in
certain atams (this example illustrates particularly well both an essentially
"collective" nature of elementary excitation as well as the correspondence of
this concept to physical reality). (Indeed it is doubtful that any one will
deny the existence of "holes" in semiconductors, just as noboby would decide
to attempt to collect them in some vessel.)

Now returning to the consideration of the above difficulties associated
with the theory of metals it is easy to see that in principle they are immediate-
1y solved by the idea of elementary excitations. Indeed, from this point of
view the known success of the "single-electron" model is entirely understand-
able: the system of many interacting electrons in the metal, like any system
of a large number of interacting particles, is characterized by certain ex-
citations and what has been called the electron in the Somerfield and Bloch
theories is in fact not an electron but a "quasi particle": the "electron
gas" in the primitive theory of metals is in fact a "gas of elementary ex-
citations" of a many electron system satisfying the Fermi statistics. In /65
this sense we can say that in the theory of metals people have always used the
language of elementary excitations without knowing it. Therefore, it is not
strange that the laws which are explained basically only by statistics are
correctly passed on by the (single-electron) theory (they are simply unrelated
to its simplifying assumptions): it is equally clear why the "single electron"
model meets with failure in the analysis of those characteristics of the sys-
tem which require more specific information concerning its energy spectrum for
the analysis¥®,

It should be emphasized that what we have presented should not be inter-
preted in any way as the final solution of difficulties associated with the
modern theory of metals. Here we have indicated a possible path for the so-
lution which, as i1t appears to us, is correct and promising but yet untraveled.
Before we can consider the solution of the problem presented above to be sat-
isfactory we must first prove that the energy of a system of electrons in a
metal is indeed expressed in the form (2.2) and we must determine the form of
the function w(k) as well as the statistics of elementary excitations¥¥*.

to the case of ionic crystals. The examination of this question, however, is
beyond the scope of our problem.
*

It is clear from what we have said how fruitless are the efforts to quantitat-
ively refine and improve the methods of the "single electron" theory which are
still being undertaken in some works. It is true that these efforts are quite
"harmless," because they do not distort the Fermi nature of the spectrum, but
they are also useless to the same degree.

3¢

In the future we shall see that, as a rule, the spectrum is mixed, i.e., there
are excitations of both the Fermi type and the Bose type.

10



As a result of this it should be possible to clarify which particular ex-
citations are possible in the particular system (it is obvious that in the
given specific system not all types of elementary excitations are possible).
For example, spin waves occur in ferromagnetic materials but not in a metal
of the beryllium type where they are apparently absent. In other words, the
question arises as to the development for methods for the investigation of
the spectra of elementary excitations. We should like to emphasize the im-
portance of this problem. The fact is that the simplicity of operations with
elementary excitations (as long as their statistics are known in the form of
the function w(k)) may easily send us on a wrong path of "adjusting" a part-
icular excitation spectrum to sult experimental data without the necessary
theoretical basis. This would create a certain apparent understanding and ex-
planation of phenomena with the actual absence of both and the concept con-
cerning elementary excitations would lose its meaning and interest¥*¥¥,

SECTION 3. ELEMENTARY EXCTITATIONS AND THE ELECTRON
THEORY OF SOLIDS

As we have seen in the preceding section, a series of difficulties assoc-
iated with the electron theory of metals could in all probability be solved
if we were able to represent the energy of weakly excited states of many-
electron system as a set of elementary excitations. We should only bear in
mind that in materials which exhibit metallic properties, at least some, (if
not all) excitations must be characterized by two peculiarities:

a) their movement in the lattice must be accompanied by charge transport
(otherwise they will not serve as current carriers),

b) there must be no consumption of finite energy for their formation.

Indeed in the contrary case, at low temperatures, the number of elementary
excitations of a given type (i.e., the number of current carriers) would drop
exponentially with a decrease in temperature. This would lead to a correspond-
ing behavior in the electrical conductivity. Apparently this does not take
place (it is true of course that the experimental question concerning the vari-
ation in the electrical conductivity of metals at low temperatures as a func-
tion of temperature is not quite clear to date). Also, in our opinion the ele-
mentary excitations of a many-electron system are specifically characteristic
E —

This statement should not be misinterpreted. Of course, we do not protest
against the establishment, for example, of the effective mass of a wuasi part-
icle from experimental data as long as it is shown that the excitation of a
particular type can indeed occur in a given system. We should recognize, to the
same degree, the rather important "inverse problem" of the theory of elementary
excitations--the determination of the spectrum form from experimental data
(rather substantial results in this direction have been obtained by I. N. Lifshits
and his co-workers (refs. 66,67)). We merely wish to guard against possible
efforts to simply postulate the existence of a particular spectrum without first
invesvigating whether its occurrence is actually possible. We should point out
that in all the works referenced above such an "adjustment" did not take place;
the form of elementary excitations was established either on the basis of direct

computation or by means of theoretical considerations of a qualitative nature.
11



of the metal state of a material and must satisfy the Fermi statistics¥. In-

deed, it is known from experiment that the heat capacity of a metal is a linear /67
function of the temperature. This relationship is easily obtained theoretically—_—
if the elementary excitations of a many-electron system form a degenerate Fermi
gas; in the case of the Bose-type excitation usch a relationship may take place
only under specific assumptions concerning the density of the energy levels.
Thdeed, the total energy E of the gas consisting of elementary excitations is

given by the well-known relationship¥¥,

_ . s@de

E= f it : (3.1)

. exp[—k—r—}i—l ‘
min .

where u is the chemical potential, ¢ is the ensrgy of a specific excitation,
p(e)de is the number of states in the energy interval (e,e+de), the signs "+
"-" correspond to the Fermi and Bose statistics respectively.

For the degenerate Fermi-gas >0 and —E—§>l; as we know the asymptotic

kT
expansion in kT/p yields (see, for example, ref. 14);

Ex s & (¢) de T (kT {P (8) -+ p 20

*min

=P},' (3.2)

which gives as a linear temperature variation in the heat capacity for any form
of p(e).

On the other hand, as we know (ref. 14), for a gas which satisfies the Bose
statistics, the chemical potential is always negative (and small in absolute
value if the gas is degenerate); therefore, the expansion of type (3.2) does not
take place, and the variation in E as a function of T is established by the
specific form of the function p(e)¥#**.
®

This does not mean that there is no Bose excitation branch in metal. Unquest-
ionably this branch exists (at least in certain metals). We merely wish to state
that apparently the Fermi branch of the energy spectrum must be present.

3¢

If several types of excitations are present it is necessary to take a sum of
expressions of type (3.1). When the values of ¢ are very large the very concept
of elementary excitations becomes inaccurate; however, this region contributes
practically nothing to the integral.

Feib

In this case p(e) usually turned out to be such that the heat capacity is pro-
portional to a higher power of temperature than the first and therefore is very
small at low temperatures. Thus, for example, in the case of phonons in a simple
lattice the heat capacity, as we know, turns out proportional to TJ.
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In the present section we propose, without considering the computational
side of the problem, to consider the modern state of the question concerning
elementary excitations of a many electron system in metals and semiconductors.

Certain types of excitations are already known to us. These are the ex-

citions and spin waves considered in the preceding section. It is clear, how- 168

ever, that by no means are they characteristic of a metal. 1Indeed, the exciton
represents a neutral formation whose origin also requires a finite energy. Con-
sequently, it is unrelated to the most characteristic property of metals--high
electrical conductivity. In the same way, when we have a simple displacement of
a state with an inverted spin (the spin wave) the electric charge is by no means
displaced along the lattice¥ since the average number of electrons for each in-
dividual atom remains unchanged (ref. 37, 38).

Thus, the model of spin waves considered eariler (sometimes known as the
"exchange model" (ref. 15)) actually describes a ferromagnetic dielectric rather
than a metal. This is understandable because in the "exchange" theory of spin
waves a very important feature of the metallic state has not been taken into
account. This feature involves the collectivization of part of the electrons
over all atoms of the lattice (it is Precisely due to this process that the ele-
ctrons acquire the capacity to move freely along the lattice and to form what
are known as "free charges" in the phenomenological theory of electricity). In
order that it be possible for us to use the theory of spin waves in the investi-
gation of ferromagnetic metals it 1s necessary to generalize it somewhat, taking
into account the inevitable collectivization of at least part of the electrons
over all of the metal atoms. A generalization of this type was carried out in
two directions. First of all we should bear in mind that in real metal ferro-
magnetism is apparently due to the electrons in the d-shells which are not com-
pletely filled; on the other hand, in electrical conductivity the principle role
is apparently played by "peripheral” electrons which (before the formation of
the crystalline metal lattice) belong to external atomic shells, and these are
collectivized over all of the metal atoms. 8. V. Vonsovskiy (refs. 39, L0) pro-
posed that the d-electrons should be considered on the basis of a many-electron
exchange model taking into account, additionally, their exchange interaction
with collectivized electrons; the interaction of the latter, however, is not
taken into account. Thus the energy spectrum of the entire system consists of
two "branches'"--a set of spin waves (excitations of the Bose type) and the sum
of the energies of external electrons (they may be looked upon as excitations
of the Fermi type). The presence of interaction between internal and external
electrons is exhibited independence of the effective mass of the latter on the
total spin of the first, i.e., on the magnetization of the specimen.

In the "s - d-exchange" model of this type¥¥ there is a simultaneous re-
flection of both ferromagnetic and electrical properties and (because we take
into account the exchange interaction between internal and external electrons)
it is possible to investigate their interrelation. It is obvious, however,

*

See, however, the footnote on page 1k,
65t

This name is associated with the fact that the external electrons are assumed
to be initially (before the formation of the metal) in the s-states.
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that the s— d-model does not completely solve the problem of determining the
energy spectrum of a system of electrons in a metal because there is no basis
for neglecting the interaction of "collectivized" electrons with one another
(this fact is also mentioned in references 39 and 40). Also, the very possibi-
lity of dividing a single system of electrons into two "parts" ("internal" and
"external" electrons) is by no means obvious; apparently in a more exact theory
it will be necessary to do without such concepts, which represent excessive
simulation.

In regard to the necessity of taking into account electron interaction,
the second possible generalization of the theory of spin waves in more con-
sistent. This generalization uses the so-called "polar" model (refs. 3, 4, 5,
28, 38, 41 and 42). According to this model the electrons in the basic state
of the metal are uniformly distributed, on the average, over all of the atoms;
the excitation of the system consists of the deviation in the distribution of
the charge from the uniform state (more precisely from the periodic state),
i.e., using more descriptive language, it consists of the transition of part of
the electrons to foreign atoms, which generates an equal number of atoms in
the lattice with an excess and deficiency of electrons (the corresponding states
of the atoms are called polar, and the name of the model itself is associated
with this fact). It is natural that due to the translational invariance of the
system the polar states in an ideal crystal are not localized to specific atoms
but can occur at any point in the lattice with equal probability. If we trans-
late this to the language of elementary excitations, the polar states correspond
to the quasi particleg’ "
respectively the wave-like propagation of states with "super complete" and

with deficient electrons*. It is obvious that the transport of electrical cur-
rent is associated with the displacement of the pair or of the hole. The

statistic satisfied by excitations of this type may be both a Fermi and a Bose
one. Thus, for example, if in the normal state there is an odd number of elec-
trons in the valance shell of the atom and if the super complete electron also
occurs in the valance shell, then the pairs and the holes are associated with

an integral spin and consequently satisfy the Bose statistics. On the other
hand, it is possible to have a situation where the atoms in the basic state

have an integral spin; then the spins of the pairs in the holes have half-
integral values and satisfy the Fermi statistics. The first case was considered
in the works S. V. Vonsovskiy referenced above, the second (using the beryllium

type metal as an example) was briefly discussed in a work by the author (ref. 43},

The polar model was used in references LY and 45 to investigate the elec-
trical conductivity of metal and of its magnetic properties. In line with the
basic ideas associated with the method of elementary excitations, the problem
in both cases was reduced to the investigation of the corresponding properties
of an ideal gas of quasi particles--of pairs and holes. The statistic which
was sabtisfied by the elementaryexeitations in reference 45 was not established.

Reference 44 was concerned with excitations of the Bose type. This situation led

to a special relationship for the variation in the electrical conductivity p as
¥*

In the version of the polar model proposed by N. N. Bogolyubov and S. V. Tyably-
kov which is more complete mathematically, the terms "pairs"as wellas'"holes" are
not introduced explicitly but the consideration of polar states leads to a sit-
uation so that the spin waves becomes associated with electrical charge trans-

port.
14

pairs" and "holes" --and the motion of these characterizes
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apparent that such a relationship is observed experimentally at low temperatures
in such metals as cesium and others. It is signifciant that it cannot be ob-
tained in any manner within the framework of a single-electron theory of metals
(ref. 1) because the key role here is played precisely by the type of statistic
which is satisfied by the current carriers (in the single-electron theory the
current carriers are free electrons and the Fermi statistics for them lead to
the well-known law: pI-2).

as a function of temperature (p=%+ s where y and B are constants), and it is

Reference 46 investigated the electrical conductivity of a metal within
the framework of a slightly different version of the polar model: it was assumed
that in the basic state the distribution of electron density has a maximum
heterogeneity (almost all of the lattice nodes are occupled either by pairs or
by holes), and the excitation of the system is associated with a decrease in
the heterogeneity of charge distribution (a partial "depolarization" of the
crystal), i.e., with a decrease in the number of pairs and holes. The corres-
ponding elementary excitations also satisfy the Bose statistics and the tem-
perature variation of electrical conductivity turns out to be the same as in
reference 45. Essentially, in reference 46, the metal is looked upon as some-
thing resembling an ionic crystal. We are not convinced that this approach to
the problem is sound (it is not very clear, for example, what will happen to
the diffraction of X-rays); however, the methodological wvalue of this cited
work 1s not questioned.

The known success achieved by the polar model should not, however, con-
ceal its serious defects, which are organically associated with its initial
assumptions. It is clear from what has been said that in its modern form the
polar model cannot be applied without a contradiction to "good" metals con-
taining a large number of current carriers. Indeed, the occurrence of current
carriers in the polar model is necessarily associated with the excitation of
the system (the current carriers are asbsent in the basic state). Consequently,
in weakly excited states (and it is only in this case that the method of guasi
particles is applicable) there will be few current carriers and we shall obtain
a substance with poor conductivity.

Moroever, in a series of cases it is necessary to have finite energy for
the formation of pairs and holes, which should lead to an exponential relation- ZZ&
ship between electrical conductivity and other quantities as a function of
temperature. Finally, it is not very clear what happens to the electron heat
capacity of the metal in the polar model (with the Bose-type spectrum). We
encounter analogous difficulties when we further generalize the polar model to

the so-called polar-exciton model (ref. 5) which considers the simultaneous
presence of three types of elementary excitations--pairs, holes and excitons.

One gets the impression that, generally speaking, in its modern form the
polar-exciton model of a solid body describes a semiconductor with an atomic
lattice rather than a metal. Indeed, it 1s precisely in the case of the semi-
conductor that we have an exponential variation in the number of current
carriers as a function of temperature. In this connection we note that the
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polar exciton model of a crystal was the one actually used to investigate the
magnetic (ref. 47) and electric (ref. 48) properties of semiconductors. The
latter work was the first to give a many-electron explanation for a series

of propositions from the "conventional" (based on the single electron-approxi-
mation) theory of semiconductors. Specifically, an atomic crystal was con-
sidered in which the pairs and holes of the polar model satisfy the Bose stat-
istics. It was shown that behavior of these excitations depends on what we
expect from the "conventional" conduction electrons and holes from the theory
of semiconductors (the energy spectrum is of the band type, finite energy is
required to produce excitation, ete). However, the basic nature (which in

some cases has practical significance), bears a difference in the types of
statistics which is satisfied by the current carriers in line with the single-
and many-electron theories. In the region of degeneration this situation will
naturally lead toa sharp difference in predictions concerning the electrical
and magnetic properties of semi _conductors. The corresponding experimental
investigations would be of substantial interest to the theory of solids. How~
ever, we should bear 1in mind that in semiconductors of the germanium or sili-
con type the spectrum of pairs and holes for the polar wodel is of the Fermi
type. This case was considered in reference 68. As was to be expected, it
turned out that in a semiconductor of this type the pairs behave analogously

to the conduction electrons of the single-electron theory, which serves as a
basis for the qualitative deductions from the latter (this refers both to an
ideal lattice and also to a lattice with defects; to a certain degree this is
also valid when external electric and magnetic fields are present). We note,
however, that this substantiation by no means relates to the computation
methods of the single-electron theory. All of the constants which characterize
the form of the energy spectrum (the width of the forbidden zone, effective mass,
etc.,) are computed in an entirely different manner in the many electron theory
compared with the single-electron theory. Substantiation refers only to the
qualitative concepts of these band models (which, incidentally, are of basic [Zg
interest to the experimenter).

It does not follow from what has been said that we should completely give
up the concepts of the polar model of a metal and limit its application to semi-
conductors. Apparently, excitations of the types considered above still exist
in metals but do not exhaust the entire energy spectrum of the latter*. These
excitations collectively form what can be called the "semiconductors" spectrum
of a metal. They are equally possible in nonmetallic crystals and represent
the general feature which is contained in the electron energy spectrum of all
crystals with atomic lattices.

In metals, however®*, there are apparently excitations of another type
which do not require finite energy for their formation and which therefore are

present even at low temperatures. (Apparently they satisfy the Fermi statistic.)
3€
In connection with this we should note that the methods proposed to date for

computing the spectra of elementary excitations, in practice, do not provide a
complete system of eigenfunctions of the Hamiltonian for the many-electron prob-
lem.
33

It would be more correct to say that precisely those substances which contain
specific excitations are metals.
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The question of investigating this specific metallic branch of the energy spec-
trum remains open to date (very great mathematical difficulties are encountered
in this probl ). 1In this comnection it becomes of interest to study even the
simplest cases of spectra of this type--Fermi and those without an energy gap,
where the current carriers must already exist in the basic state of the system.
Apparently, the easiest system which can be considered is one of weakly inter-
acting conduction electrons in the crystal. In this case, in order to deter-
mine the energy spectrum we can use the theory of perturbations (the small
parameter is the one defining the ratio of conduction electron concentration

to the number of nodes in a lattice per unit volume)* -The corresponding methodo-
logy was developed in reference 49 and used to compute the electron conductivity

in metals according to the many-electron model in references 50 and 51. In

the latter two works it has been shown that, as was to be expected, the "stat-
istical" results produced by the single-electron theory (the temperature law

of electrical conductivity) also remain valid when the current carriers are
elementary excitations of the Fermi type. However, we should remember that the
guantitative results (ref. 49) (and consequently ref. 50) are of limited mean-
ing and in our opinion cannot be gpplied to real metals in which the concentra-
tion of conduction electrons is by no means small. It would be more accurate
to consider these results as applying to semiconductors, where the conditions
for the applicability of this method of computation are indeed satisfied.

Recently the representation of local density variations as elementary ex-
citations of the many-electron system has received rather extensive develop-
ment from a slightly different point of view (refs. 52-59) than the conventional
polar model. In these works¥* the idea expressed long ago by Bloch (ref. 60)
was developed in detail. According to this idea the elementary excitations of
a many-electron system are nothing more than the propagation of sound waves in
this system (i.e., deviations from the spatial homogeneous distribution of
electrons--of the plasma oscillations type (ref. 61-62)). The corresponding
"quasi particles"--phonons--naturally satisfy the Bose statistics¥¥#¥*,

In reference 53 and particularly reference 57, however, it is shown that
for the three-dimensional case, which is of real physical interest, the sound
oscillations do not exhaust all the excitations of a many-electron system.

*

This formulation of the problem is quite natural for the nondegenerate (or
weakly degenerate) case. When strong degeneracy is present the role of the
small parameter may be placed by the ratio of the average interaction energy
to the Fermi energy (see ref. 68).

%

In line with the basic arrangement of this article we concern ourselves only
with the physical contents of these works without entering into a comparative
evaluation of the computation methods developed in them. We merely wish to
state that in our opinion the most complete and rigid consideration of the
problem is given in reference 57.
st

These concepts are rather similar to the polar model. Actually, however, the
fluctuations of density to date have been investigated either by a method which
does not exhibit excitations of the Fermi type or by neglecting the periodical
(Footnote continued on next page).
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In addition to these, there is a Fermi branch of the spectrum, which
apparently is of particular interest for our purposes. It is also significant
that, unlike ordinary sound waves which propagate in neutral uncharge systems,
the excitation of plasma oscillations requires an expenditure of finite energy

EO’ and the value of this energy is by no meansismall: EO= ﬁf]/régne{ where n
is the number of electrons per unit volume, and m and e are the mass and the
charge of the electron, respectively. When n is approximately equal to

1022 cm-5

R EO turns out to be approximately equal to 8.6 electron volts; there-
fore, at ordinary temperatures the plasma phonons are practically absent. Only /Th
zero oscillations of the plasma are present. Precisely these ag well as the
Fermi branch are of interest to the theory of metals per se.

We note, however, that the study of plasma phonons may play a significant
role in the retardation of fast charge particles moving through the metal¥®
(the energy of the particle may be used to excite plasma oscillations). The
investigation of the Fermi branch in this method of computation has not been
carried out to date with the required degree of accuracy. In our opinion
it is necessary that we take into account the atomic structure of the crystal,
in particular the periodic field of the lattice (apparently this does not pro-
duce a noticable effect on plasma oscillations, or else the wavellengths in
gquestion are sufficiently large so that the discrete structure of the crystal
is smeared).

In summarizing everything that has been said, we should acknowledge that
at the present time the concept of elementary excitations (which started to
develop only rather recently) has already produced important achievements and
has permanently won its rightful place in the physics of condensed systems. In
the application to the theory of the solids it may be assumed without dispute
that the energy spectrum of a system of a large number of interacting electrons
in the crystal has a "mixed" nature--it contains both a Bose branch as well as
a Fermi branch. We may assume that the first one has been studied to a certain
degree; apparently it is exhausted by the study of spin waves, (in ferromagnetic
materials), excitons and fluctuations of the electron density (in some form or
other).

(Footnote continued)

nature of the field in the crystalline lattice (the positive charge of this
system was assumed to be equally distributed in space and its role consisted
only in compensating for the total negative charge of the electrons) On the
other hand the polar model in its modern form is significantly associated with
the proposition on the correct periodic distribution of atoms in the crystal-
line lattice. It is possible that in the future, by generalizing the results
of reference 57 to the case where a periodic field is present in the lattice,
the polar model and the method of density fluctuations may turn out to be
equivalent to some degree and will represent two different approaches to the
same problem.

*

In this connection also see references 63 and 6k4.
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In regard to the second branch,at the present time it is only possible
to investigate its "semiconductor" part. The creation of new computation
methods which would make it possible to theoretically study the excitation

of the "metallic" type appears to us to be one of the most urgent problems of
the physics of solids.
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